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The object of this paper is to show that a variety of dispersion and mixing phenomena induced by laminar
convection and diffusion can be approached by perturbation analysis of the spectrum associated with the
corresponding advection-diffusion operator. As a case study for dispersion, we consider the classical Taylor-
Aris problem, whereas a prototypical model of Sturm-Liouville generalized eigenvalue problem is considered
for describing mixing in open or closed bounded flows. For both cases, we show how a simplified �low-order�
perturbative approach defines quantitatively the range of different mixing regimes and the associated time
scales. Furthermore, we show how a complete higher-order approach cannot improve significantly the simpli-
fied low-order analysis due to the lack of analyticity of the eigenvalue branches. The perturbation analysis is
also extended to models of physically realizable mixing systems �lid-driven cavity flow�.
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I. INTRODUCTION

Triggered by the technological development of microsys-
tem engineering �1� and by the broad range of different
physical phenomenologies it can embrace �2�, the analysis of
the dynamics of scalar fields advected by a regular flow in
the presence of molecular diffusion is experiencing continu-
ous advances.

In recent years, it became clear that complex transport
phenomenologies can arise not only in kinematically com-
plex flows �such as those giving rise to Lagrangian chaos�,
but even in simple flows that are trivial from the kinematic
standpoint �3�. This is, for example, the case of the scaling of
the mixing layer in T-junction microdevices �4� of the dis-
persion properties in straight capillaries and finite length mi-
crochannels at high values of the Péclet number �5� �the Pé-
clet number Pe= tdif / tadv is the ratio of the characteristic time
for diffusion tdif to that of advection tadv; in the case of par-
allel channel flows of finite length L, tdif=L2 /D, where D is
the solute diffusivity, tadv=L /V, where V is the mean axial
velocity, so that Pe=VL /D�, beyond the region of validity of
Taylor-Aris dispersion theory �6�.

Similarly, in the investigation of mixing properties of
simple flow systems in the presence of molecular diffusion,
recent studies have unveiled a complex spectral structure of
the non-Hermitian advection-diffusion operator that controls
the decays of scalar norms �7�. This analysis is particularly
interesting for high values of the Péclet number, where the
occurrence of different mixing regimes is associated with
different asymptotic scalings of the real part of the eigen-
value spectrum as a function of the Péclet number.

In this paper, we analyze the capability of perturbation
methods to predict mixing and dispersion properties in the
low and intermediate ranges of the Péclet number, starting
from the analysis of the eigenvalue spectrum of the
advection-diffusion operator. Specifically, the main focus of

this are is �i� to show that simplified perturbative approaches,
based on the physical definition of different mixing regimes,
can predict with sufficient accuracy the leading-order behav-
ior of the eigenvalue spectrum for low and intermediate Pé-
clet numbers, �ii� to relate these simplified approaches to the
properties of the eigenfunctions in the low Péclet number
region, and �iii� to develop a complete perturbative analysis,
similar to the classical perturbation technique developed in
quantum mechanics, of the non-Hermitian operators associ-
ated with the interplay between advection and diffusion both
in steady and unsteady, and batch and open mixing systems.

The paper is organized as follows. Section II presents an
alternative spectral derivation of the Taylor-Aris dispersion
theory in the presence of cross-sectional flows. In point of
fact, dispersion theory in long channel can be viewed as a
perturbative problem and different perturbative schemes
have been proposed �8�. We propose a simple approach that
unifies the analysis of dispersion with the spectral analysis of
mixing in closed and open systems. Section III discusses
mixing regimes in simple flow systems. From the physical
understanding of the dominant contribution to mixing, a sim-
plified perturbative approach is developed. Section IV ad-
dresses a nonapproximate perturbative approach, compares
its results to the method developed in Sec. III, and discusses
its range of validity. Moreover, the perturbation analysis is
extended to a typical, physically realizable flow system,
namely, the lid-driven cavity flow.

II. SPECTRAL VIEW TO TAYLOR-ARIS DISPERSION

This section reformulates the Taylor-Aris theory for infi-
nitely long straight channels as a simple perturbation prob-
lem for the eigenvalue spectrum of the advection-diffusion
operator in laminar incompressible flows. Let x� be the di-
mensionless transverse coordinate vector, normalized with
respect to the characteristic transverse length W and �
= tD /W2 the dimensionless time �D is solute molecular dif-
fusivity�. Let �� be the channel cross section in the dimen-
sionless coordinate system.

*Author to whom correspondence should be addressed;
max@giona.ing.uniroma1.it

PHYSICAL REVIEW E 81, 046309 �2010�

1539-3755/2010/81�4�/046309�11� ©2010 The American Physical Society046309-1

http://dx.doi.org/10.1103/PhysRevE.81.046309


Let us suppose that the velocity field consists of an axial
component vz�x��=V�1+��x��� �V is the mean axial veloc-
ity� and of a cross-sectional component V�u�x��, which de-
pends solely on the cross-sectional coordinates x�. By defi-
nition of ��x��, it follows that ���

��x��dS=0. In the
classical Taylor-Aris theory, the cross-sectional velocity con-
tribution is absent �V�=0�. Besides, this additional term can
describe simple transverse electro-osmotic flows in microde-
vices �9�, which are superimposed to the pressure-driven
axial flow.

In a reference frame moving with the average axial veloc-
ity V, the balance equation for the dimensionless solute con-
centration � within the capillary reads

��

��
= − Pe�

��

��
− Pe�u · ��� + ��

2 � +
�2�

��2 , �1�

where � is the axial coordinate in the moving reference sys-
tem, �= tD /W2 �t is the physical time�, Pe=VW /D, Pe�

=V�W /D, and �� is the cross-sectional nabla operator �with
respect to the transverse coordinates x��. Equation �1� is
equipped with the Neumann boundary condition �� /�n ����

=0 at the boundary ��� of the cross section. For Pe�=0, Eq.
�1� provides the classical formulation of the dispersion prob-
lem in long channels due to Aris �6�, which is customarily
approached by means of moment analysis.

To state that the interplay between the flow field and
molecular diffusion gives rise to the occurrence of an effec-
tive dispersion coefficient Ddis, which is the essence of
the argument of Taylor and Aris, is equivalent to say that
in the long-time, long-distance asymptotics, the evolution
of the sectionally averaged solute concentration �̄�� ,��
=1 /area�������

�dS can be described as a purely diffusive
transport problem

��̄

��
= D̂dis

�2�̄

��2 , �2�

where D̂dis=Ddis /D is the dimensionless dispersion coeffi-
cient. The interplay between advection and diffusion in long
tubes, which controls the broadening of concentration pro-
files, is therefore completely embedded in the functional

form of the effective dispersion coefficient D̂dis and in its
dependence on the Péclet number.

Since, by hypothesis, the channel is infinitely extended,
�� �−� ,��, the scalar field ��� ,x� ,�� can be expressed via
a Fourier transform

���,x�,�� = �
−�

�

eik��k��,x��dk , �3�

where i=�−1. The dynamics of each mode �k satisfies the
equation

��k

��
= − ik Pe ��k − Pe�u · ���k + ��

2 �k − k2�k = Lk��k� .

�4�

If Eq. �2� holds in the long-distance limit, then the eigen-
values �k of the linear operator Lk at the right-hand side of
Eq. �4�,

�k	k = − ik Pe �	k − Pe�u · ��	k + ��
2 	k − k2	k, �5�

must verify the condition

�k = − k2D̂dis + O�k3�, k � �− �,�� �6�

in the limit of small k �long-distance approximation�. Let

k=�k+k2, so that Eq. �6� becomes


k	k�x�� = − ik Pe ��x��	k�x�� − Pe�u�x�� · ��	k�x��

+ ��
2 	k�x�� . �7�

Expanding 
k and 	k in power series of Pe,


k = 
k,0 + Pe 
k,1 + Pe2
k,2 + ¯ , �8�

	k = 	k,0 + Pe 	k,1 + Pe2	k,2 + ¯ , �9�

and substituting this expansion into Eq. �7�, one obtains


k,0	k,0 = − Pe�u · ��	k,0 + ��
2 	k,0, �10�


k,1	k,0 + 
k,0	k,1 = − ik�	k,0 − Pe�u · ��	k,1 + ��
2 	k,1,

�11�


k,2	k,0 + 
k,1	k,1 + 
k,0	k,2 = − ik�	k,1 − Pe�u · ��	k,2

+ ��
2 	k,2, �12�

equipped with the Neumann boundary conditions
�	k,h /�n ����

=0, h=0,1 , . . ..
The dominant eigenvalue of the zeroth order perturbation

is 
k,0=0 and the corresponding eigenfunction is 	k,0=1. By
definition, the dominant eigenvalue �of the whole spectrum
or of a specific spectral branch� is the eigenvalue with the
largest absolute value of the real part, which dominates the
asymptotic exponential decay for generic initial conditions
�in the case of the whole spectrum� or for generic initial
conditions exciting solely a given spectral branch �in the case
of a spectral branch�.

Substituting this result into the equation for the first-order
term, one obtains

��
2 	k,1 − Pe�u�x�� · ��	k,1 = 
k,1 + ik��x�� . �13�

Note that, because of the homogeneous Neumann boundary
conditions, a necessary requirement for the existence of a
solution of Eq. �13� is that the forcing term 
k,1+ ik��x��
possesses vanishing cross-sectional mean value. This implies
that

�
��

�
k,1 + ik��x���dS = 0 ⇒ 
k,1 = 0 �14�

and therefore the corresponding eigenfunction term satisfies
the elliptic equation

��
2 	k,1 − Pe�u�x�� · ��	k,1 = ik��x�� . �15�

For the second-order term, one obtains
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��
2 	k,2 − Pe�u�x�� · ��	k,2 = 
k,2 + ik��x��	k,1 �16�

Also, for Eq. �16�, a solution exists if and only if 
k,2
+ ik��x��	k,1 admits vanishing cross-sectional average, i.e.,


k,2 = −
ik

area�������

��x��	k,1�x��dS , �17�

which provides the second-order correction. Letting 	k,1
=−ikg1, the function g1�x�� satisfies the elliptic equation

��
2 g1 − Pe�u�x�� · ��g1 = − ��x�� �18�

and


2,k = − k2�g1, �g1 =
1

area�������

��x��g1�x��dS .

�19�

Equations �8� and �19� imply that


k = − k2 Pe2�g1, �20�

which implies that Eq. �6� is satisfied, since

�k = − k2 − k2 Pe2�g1 = − k2�1 + Pe2�TA� �21�

where �TA=�g1 is the generalized Taylor-Aris dispersion co-
efficient. It is straightforward to check from Eq. �18� that
�TA�0. Equation �21� enables us to identify the effective
dispersion coefficient Ddis,

Ddis = D +
V2W2�TA

D
. �22�

For Pe�=0, one recovers the classical Taylor-Aris expres-
sion, usually derived by means of moment analysis �6�. For
Pe��0, one obtains a simple and rigorous derivation of the
expression obtained in �10� in the presence of cross-sectional
velocity fields.

III. MIXING REGIMES: ANGULAR DIFFUSION
AND SIMPLIFIED PERTURBATIONS

This section analyzes the behavior of the mixing regimes
in the low and intermediate Péclet number regions and the
development of simplified perturbation techniques that can
be deduced from the physical insight on the properties of
these regimes.

A. Model problem

Henceforth, we consider the following generalized
eigenvalue-eigenfunction problem

�w�y�	�y� = 
�y
2	�y� + iV�y�	�y� − 


4�2

�m
2 	�y� , �23�

where y� �0,1� and 	�y� is equipped with the homogeneous
Neumann conditions �y	�y� �y=0,1=0. In Eq. �23�, w�y��0,
�m is a real parameter, and 
=1 /Peeff is the reciprocal of the
“effective Péclet number” �see below for details�.

The physical basis of Eq. �23� is the stationary response
of a rectified version of the inflow-outflow Couette system
�see Fig. 1�a��, depicted in Fig. 1�b�, where x� �0,Lx�, y
� �0,Ly�, z� �0,Lz�, corresponding to the flow between two
parallel plates located at y=0 and y=1. In this model, the
coordinates x and z parametrize the angular and axial direc-
tions, respectively �periodic boundary conditions are im-
posed between x=0 and x=Lx�, the axial profile vz�y� is a
pressure-driven Poiseuille flow �unless otherwise stated�, and
the “angular” profile vx�y� represents the planar Couette flow
induced by the motion of the lower and upper walls, y=0 and
y=1.

In stationary conditions, the equation for the propagation
of a scalar field � along the channel is

vz�y��z� = − vx�y��x� + D��x
2� + �y

2� + �z
2�� , �24�

where D is the diffusion coefficient. Let vz�y�=V	w�y� and
vx�y�=V�u�y�, where V	 and V� are the characteristic axial
and cross-sectional velocities, respectively �V	 can be defined
so that the dimensionless mean axial velocity vz�y� /V	 equals
1�, and let x→x /Lx, y→y /Ly, and z→z /Lz. Henceforth, we
let x, y, and z indicate the rescaled dimensionless variables.
In this dimensionless setting, Eq. �23� becomes

w�y��z� = − �u�y��x� +
�2

Pe �2�x
2� +

�2

Pe
�y

2� +
1

Pe
�z

2� ,

�25�

where �=V�Lz /V	Lx measures the relative intensity of angu-
lar to axial velocity, Pe=V	Lz /D is the Péclet number, and �,
� are the geometric aspect ratios �=Lx /Ly, �=Lz /Lx. Since
the aspect ratio � is usually much larger than 1, the effect of
the axial diffusion can be neglected compared to transverse
diffusion, so that Eq. �25� simplifies to

w�y��z� = − �u�y��x� + 
�y
2� +




�2�x
2� , �26�

where


 =
1

Peeff
, Peeff =

Pe

�2 . �27�

Expanding � with respect to the periodic basis ei2�mx, i.e.,
��x ,y ,z�=
m�m�y ,z�ei2�mx, one obtains for �m the equation

ρ

θ zy

x z

y

x

(b)(a)

FIG. 1. �Color online� �a� Couette system in a cylindrical coor-
dinate system �� ,� ,z�. �b� Schematic representation of the geom-
etry of the rectified Couette flow. In the rectified model ��y,
��x, and z�z. Since x corresponds to a rectified angular coordi-
nate, periodic boundary conditions are imposed at x=0,Lx. Several
velocity profiles considered throughout the paper are schematically
depicted.
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w�y��z�m = iV�y��m + 
�y
2�m − 


4�2

�m
2 �m, �28�

where V�y�=−2�m�u�y� and �m=� /m. Equation �28� gives
rise to the eigenvalue problem expressed by Eq. �23�. Table I
reviews the physical meaning of each term entering Eq. �23�
with reference to the three-dimensional inflow-outflow Cou-
ette system.

The eigenvalue problem Eq. �23� has been derived for a
Cartesian version of the three-dimensional inflow-outflow
Couette system under stationary conditions. It describes the
stationary propagation of a scalar field in a cylindrical struc-
ture in the case where the gap between the inner �Rin� and the
outer �Rout� radii is small, i.e., 1−Rin /Rout�1. In this prob-
lem, the eigenvalues � are associated with the axial decay of
the field norms �L2, Sobolev norms� along the axial coordi-
nate z. Physically meaningful expressions for w�y� and V�y�
are w�y�=6y�1−y� �corresponding to a Poiseuille axial flow�
and w�y�=2y �corresponding to a shear flow in the axial
direction�. For V�y�, we assume the expression V�y�=−1
+2y, corresponding to equal counter-rotating motion of the
walls. The value of the aspect ratio � �and, consequently of
�m, if one is interested in the dominant mode m=1� is much
greater than 1.

In point of fact, the case w�y�=1 is also interesting, as Eq.
�23� corresponds to the eigenvalue problem associated with
the time evolution of a scalar field in a two-dimensional
annular structure between two cylinders �in the small gap
limit�. In the latter case, the real parts of the eigenvalues �
correspond to the characteristic temporal decay rates of the
norms of �.

B. Mixing regimes

This section analyzes the occurrence and the physics of
different mixing regimes in the low and intermediate Péclet
number regions. Consider Eq. �23� for a Poiseuille flow
w�y�=6y�1−y� and for V�y�=−1+2y, corresponding to a
transverse counter-rotating Couette flow. Let �=
+ i� and

d the real part of the dominant eigenvalue, i.e., of the ei-
genvalue with the largest real part �since 
d�0, 
d pos-
sesses the smallest absolute value�.

Figure 2 depicts the behavior of the real part of the domi-
nant eigenvalue with reverse sign as a function of the effec-
tive Péclet number Peeff=
−1 for several values of �m �11�.
As can be observed, for Peeff�1, −
d is proportional to the
reciprocal of the effective Péclet number �lines �a�–�c� in Fig.
2�. Although log-log scale is used in Fig. 2, observe that lines

�a�–�c� correspond to −
d�1 /Peeff. This phenomenon can
be interpreted by observing that in this Péclet number region
the homogenization of the scalar field is almost exclusively
controlled by angular diffusion, i.e., by the diagonal term
−
�4�2 /�m

2 �	�y� entering Eq. �23�. This stems from the fact
that in the low Péclet region, the eigenfunctions are almost
uniform and therefore ��y

2	�y��� �4�2 /�m
2 ��	�y��.

The action of pure angular diffusion in the absence of
cross-sectional flow and in the presence of a uniform axial
flow gives rise to a dominant eigenvalue equal to

− �d = − 
d =
4�2

�m
2 Peeff

. �29�

Lines �a�–�c� in Fig. 2 represent the diffusive scaling Eq. �29�
and are fairly accurate descriptions of the spectral properties
in the low Péclet number region to the leading order �see
below for a quantification of this statement�. This means that
the spatial nonuniformities in the axial velocity profiles do
not contribute, to the leading order, to the scaling of the
dominant eigenvalue. This means that the characteristic de-
cay −
d in this Péclet number region can be approximated
by Eq. �29� as if w�y� were spatially uniform �this issue is
further addressed below�.

As Peeff increases, a nonmonotonic behavior of −
d oc-
curs: above the local minimum, the real part of the dominant
eigenvalue �with reversed sign� grows proportionally to Peeff.
Observe that above the local minimum, the values of −
d
becomes practically independent of �m. Physically, this
means that the effect of angular diffusion is practically neg-
ligible in this parameter region. This phenomenon can be
investigated further by considering a shear flow, i.e., w�y�
=2y, for which analytical results can be obtained �see be-
low�.

Figure 3 �symbols �� depicts the dominant eigenvalue
−
d for the shear flow �and for V�y�=−1+2y�. The qualita-
tive properties of −
d are similar to those characterizing the

TABLE I. Physical meaning of the terms appearing in Eq. �23�
in the case of the steady response of an open �inflow-outflow� Cou-
ette mixing system.

Term Physical meaning

−w�y�	�y� Axial flow


�y
2	�y� Transverse diffusion

iV�y�	�y� Transverse flow

−
�4�2 /�m
2 �	�y� Angular diffusion

101

10-1

10-3

10310110-110-3

-µ
d

Peeff

abc

d

FIG. 2. Real part of the dominant eigenvalue with reversed sign
−
d vs Peeff for a Poiseuille flow w�y�=6y�1−y� and V�y�=−1
+2y. Symbols ���, ���, and ��� refer to �m=20, �m=60, and
�m=200, respectively. Lines �a�–�c� represent the angular diffu-
sion scaling −
d=4�2 / ��m

2 Peeff�. Dotted line �d� is the perturbative
result deriving from Eq. �54� −
d=G�1��1� Peeff, with G�1��1�
=0.0333.
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Poiseuille flow depicted in Fig. 2. Figure 3 also depicts the
dominant eigenvalue for �m→�, corresponding to the eigen-
value problem Eq. �23� in the absence of angular diffusion
�symbols ��. In the limit for �m→�, the whole low and
intermediate Péclet numbers region is characterized by a
dominant eigenvalue that is proportional to Peeff and, more
significantly, the eigenvalues for �m→� match quantita-
tively the corresponding eigenvalues for finite �m for Peeff
values above the local minimum point, i.e., for Peeff�10−1.
The latter observation is particularly significant, since it en-
ables us to apply a simple and effective perturbation expan-
sion �see next subsection� grounded on the decoupling of the
action of angular diffusion from the controlling homogeniza-
tion dynamics.

Before developing such a simplified perturbation ap-
proach, it is interesting to analyze further the properties of
the eigenvalues and eigenfunctions of Eq. �23�. For Peeff
�10−1, the effect of the transverse velocity field V�y� is prac-
tically negligible, so that the eigenvalue problem Eq. �23�
simplifies to

�w�y���y� = 
�y
2��y� − 


4�2

�m
2 ��y� , �30�

equipped with the homogeneous Neumann boundary condi-
tions ��y� �y=0,1. We use a different symbol, ��y�, instead of
	�y�, to indicate the eigenfunctions of the simplified eigen-
value problem in which the effect of the transverse flow is
neglected. The eigenvalues � of Eq. �30� are all real �since
the associated operator is Hermitian� and negative and the
effect of the Péclet number can be scaled out by defining �
=� /
.

Consider the case of a shear flow w�y�=2y, so that Eq.
�30� becomes

�2�y + c���y� = �y
2��y� , �31�

where c=4�2 /�m
2 . Let �a=−��0,

p =
c

2�a
, q = − � 1

2�a

1/3

, � =
y − p

q
= ��y,�a� , �32�

the eigenvalues �a �with reversed sign� satisfy the character-
istic equation

f��a� = Ai���1��a��Bi���2��a�� − Ai���2��a��Bi���1��a�� = 0,

�33�

where Ai��� and Bi��� are the Airy functions of the first and
second kinds, Ai���1�=d Ai��� /d� ��=�1

, and

�1 =
c

�2�a�2/3 , �2 = − ��2�a�1/3 −
c

�2�a�2/3� . �34�

Equation �34� admits a countable system of positive roots
�a,h h=1,2 , . . ., ordered in an increasing way with respect to
h �see Fig. 4�, that correspond to the eigenvalues �h with
reversed sign. The associated eigenfunctions read as

�h�y� = Ch�Ai��� −
Ai���1�
Bi���1�

Bi����, � = ��y,�c,h� ,

h = 1,2, . . . , �35�

where � depends on y and �a,h according to Eq. �32�. Let us
compare the eigenvalues �=� /
 of Eq. �30� to those ob-
tained by considering exclusively the effect of the angular
diffusion, the dominant eigenvalue of which �with reversed
sign� is given by

gd��m� =
4�2

�m
2 = c . �36�

Figure 5 shows the behavior of �a,1��� and of the difference
gd��m�−�a,1��m� as a function of the aspect ratio �m for the
shear flow �panel A�. It can be observed that gd��m� repre-
sents the leading-order term in the expansion of �a,1��m� as a
function of 1 /�m. The second-order correction behaves quar-
tically with �m

−1 �curve �b� and symbols ����, i.e.,

10-1

10-3

10-5

10110010-110-210-3

-µ
d

Peeff

ab

FIG. 3. Real part of the dominant eigenvalue with reversed sign
−
d vs Peeff for a shear flow �w�y�=2y , V�y�=−1+2y�. Symbols
��� refer to �m=200, while symbols ��� refer to the same problem
in the absence of angular diffusion, Eq. �23� for �m→�. Line �a�
represents the angular diffusion scaling −
d=4�2 / ��m

2 Peeff�, dot-
ted line �b� is the perturbative result deriving from Eq. �54� −
d

=G�1��1� Peeff, with G�1��1�=0.0333.

-0.5

0

0.5

10210110010-110-2

f(
ν a

)

νa

FIG. 4. Characteristic function f��a� vs �a for the shear flow
�w�y�=2y� at �m=20. Dots ��� are the first zeroes of f��a�.
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�a,1��m� = gd��m� −
Cd

�m
4 + O��m

−6� , �37�

where Cd�0. An analogous result is obtained for the Poi-
seuille flow w�y�=6y�1−y� �panel �b� of Fig. 5�, although in
the latter case no analytic expression for the eigenvalues
�a,1��m� is available. Note that this result implies that the
effects of a nonuniform axial flow w�y� �be it a shear or a
Poiseuille profile� must be balanced, to the leading order, by
the term �y

2�1�y�, so that the overall effect yields Eq. �37�.
Figure 6 shows the profile of the dominant eigenfunction

�1�y� for several values of �m for the shear flow. As can be
observed, the eigenfunctions are almost uniform �see the y
range in Fig. 6�. This result is a direct consequence of the
relation between the eigenvalue and the norms of the associ-
ated eigenfunction. From Eq. �30�, by considering the domi-
nant eigenfunction normalized with respect to the weighted
L2 norm ��1 ,�1�w= 	�1	w

2 =�0
1w�y��1

2�y�dy=1, it follows that

�1 = − �a,1 = − �	�y�1	2 + c	�1	2� , �38�

where 	�1	2=�0
1�1

2�y�dy is the usual L2 norm. From Eqs. �37�
and �38�, it follows that the norm of the gradient of �1�y�
scales as 	�y�1	2�O��m

−4�. This explains the results depicted
in Fig. 6. Indeed, this result is significant in the development
of simplified perturbation approaches, as discussed in the
next paragraph.

C. Regime-based perturbation analysis

The results obtained in the previous paragraph can be
summarized as follows: �i� for low Péclet number values, the
mixing regime is exclusively controlled by angular diffusion
�term −
�4�2 /�m

2 �	 in Eq. �23��, �ii� as the Péclet number
increases, the effect of angular diffusion becomes progres-
sively negligible and homogenization is controlled by the
interplay between transverse diffusion �term 
�y

2	 in Eq.
�23�� and the cross flow �term iV�y�	 in Eq. �23��. Moreover,
the dominant eigenfunction �1�y� of Eq. �30� in the absence
of cross flow for �m�1 deviates slightly from the uniform
profile and this deviation decreases as �m increases.

Starting from these observations, it is possible to develop
a simplified perturbation scheme in which the effects of an-
gular diffusion are decoupled from the other contributions.
The starting point is the assumption of the following decou-
pling ansatz for the eigenvalues � of Eq. �23�:

� = −
4�2

�m
2 Peeff

+ �̃ , �39�

where �̃ are the eigenvalues of Eq. �23� in the absence of
angular diffusion, thus satisfying the eigenvalue problem

�̃w�y�	̃�y� = 
�y
2	̃�y� + iV�y�	̃�y� , �40�

where 	̃�y� are the associated eigenfunctions. Equation �40�
is equipped with the homogeneous Neumann conditions

�y	̃�y� �y=0,1=0. Indeed, Eqs. �39� and �40� can be viewed as
the leading contribution in the perturbative expansion of the
eigenvalue and eigenfunctions with respect to 1 /�m

2 .
Equation �40� provides a simplified setting for eigenvalue

perturbation and closed-form results can be obtained for ge-

neric velocity profiles. To see this, let �̃= �̃ /
= �̃ Peeff, so that
Eq. �40� becomes

�̃w�y�	̃�y� = �y
2	̃�y� + i PeeffV�y�	̃�y� �41�

and let us consider Peeff as a small parameter for the pertur-
bation expansion

�̃ = 

k=0

�

Peeff
k �̃�k�, 	̃�y� = 


k=0

�

Peeff
k 	̃�k��y� . �42�

Substituting Eq. �42� into Eq. �41� and collecting term by
term equal powers of Peeff, one obtains for k�1,

�y
2	̃�k��y� + iV�y�	̃�k−1��y� − w�y�


h=0

k

�̃�h�	̃�k−h��y� = 0,

k = 1,2, . . . , �43�

while the equation for the zeroth order term reads as

�y
2	̃�0��y� − w�y��̃�0�	̃�0��y� = 0. �44�

Each perturbative term 	̃�k��y� should satisfy the boundary

conditions �y	̃
�k��y� �y=0,1=0, k=0,1 , . . ..

Let us focus on the dominant eigenvalue. From Eq. �44�,
it follows that the dominant eigenvalue is ��0�=0 and the
associated eigenfunction is uniform 	�0��y�=1. This result is
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consistent with the behavior observed for the dominant
eigenfunction �1�y� �see Fig. 6� associated with Eq. �30�.
For the first-order term, Eq. �43� provides �y

2	̃�1��y�
+ iV�y�	�0��y�−w�y���̃�0�	�1�+ �̃�1�	�0��=0. By taking into ac-
count the result for the zeroth order contribution, this equa-
tion simplifies to

�y
2	̃�1� = − iV�y� + �̃�1�w�y� . �45�

A first integration provides

�y	̃
�1��y� = − i�

0

y

V���d� + �̃�1��
0

y

w���d�

= − iV�1��y� + �̃�1�w�1��y� , �46�

where V�1� and w�1��y� are the primitives of V�y� and w�y�,
respectively, such that V�1��0�=w�1��0�=0. Observe that the
additive constant that should appear after one quadrature has
been set equal to zero in order to match the Neumann con-
dition at y=0. The enforcement of the boundary condition at
y=1 provides the value of �̃�1�, namely,

�̃�1� = i
V�1��1�
w�1��1�

= i�1. �47�

The first-order correction to the dominant eigenvalue is

therefore purely imaginary. A further quadrature yields 	̃�1�,

	̃�1��y� = − i�
0

y

V�1����d� + i�1�
0

y

w�1����d�

= i�− V�2��y� + �1w�2��y�� + C1, �48�

where V�2��y� and w�2��y� are the primitives of V�1��y� and
w�1��y�. The constant C1 can be set equal to zero for two
reasons: �i� it does not contribute to the shape of the eigen-
function, as any constant value can be rescaled in the uni-
form zeroth order term, and �ii� it does not contribute to the
estimate of �̃�2�.

For the second-order expansion, by making use of the
above results, one obtains

�y
2	̃�2� − �V�y� − �1w�y����1w�2��y� − V�2��y�� − �̃�2�w�y�

+ iC1�V�y� − �1w�y�� = 0. �49�

Let

G�y� = �V�y� − �1w�y����1w�2��y� − V�2��y�� , �50�

so that Eq. �49� can be rewritten as

�y
2	̃�2��y� = G�y� + �̃�2�w�y� − iC1�V�y� − �1w�y�� . �51�

A first quadrature provides

�y	̃
�2��y� = G�1��y� + �̃�2�w�1��y� − iC1�V�1��y� − �1w�1��y�� ,

�52�

where G�1��y�=�0
yG���d�. By enforcing the boundary condi-

tion at y=1, one obtains the value of �̃�2�, namely,

�̃�2� = −
G�1��1�
w�1��1�

. �53�

The second-order correction to the dominant eigenvalue is
real. Observe that, because of Eq. �47�, the value of C1 is
immaterial since the factor V�1�−�1w�1� multiplying it is
identically equal to zero. A further quadrature of Eq. �52�
readily yields the expression for 	̃�2��y�.

Since we are mainly interested in the eigenvalue scaling,
by collecting Eqs. �39�, �42�, �47�, and �53�, the real part 
d
of the dominant eigenvalue up to the second-order reads as


d = Re��d� = −
4�2

�m
2 Peeff

+
Re��̃�
Peeff

= − � 4�2

�m
2 Peeff

+ G�1��1� Peeff
 , �54�

where we have made use of the fact that w�1��1�=1, since the
axial velocity field is normalized to unit mean velocity.

As can be observed, Eq. �54� resembles a Taylor-Aris-
type expression. In the low-intermediate Péclet number re-
gion, the scaling of the dominant eigenvalue is given by the
superposition of the pure angular contribution, which is in-
versely proportional to the Péclet number plus a term propor-
tional to Peeff �second term at the right-hand side of Eq.
�54��, −
d=G�1��1� Peeff. The influence of this second-order
correction is depicted in Fig. 2 �line d� and agrees with the
observed scaling of the dominant eigenvalue. In the particu-
lar case of the Poiseuille flow, the value G�1��1�=0.0333 is
obtained.

Figure 7 �panels A and B� shows the overall prediction of
the spectral behavior in the low-intermediate Péclet number
region for the Poiseuille and the shear flow. A good agree-
ment between the numerical values and the simplified pertur-
bative expansion can be observed. It is worth observing that
Eq. �54� is fully predictive once the functional forms of V�y�
and w�y� are given and permits to obtain a closed-form ex-
pression for the second-order correction in terms of the func-
tional G�1��1�, the value of which depends on the axial and
transverse velocity profiles. In principle, one could derive
higher-order corrections, which however do not improve sig-
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FIG. 7. Perturbative prediction of the real part of the dominant
eigenvalue with reversed sign in the low Péclet number range.
Panel �a�: Poiseuille flow. Symbols ��� refer to �m=20, ��� to
�m=60, and ��� to �m=200. Lines �a�–�c� are the theoretical pre-
dictions based on Eq. �54�. Panel �b�: Shear flow. Symbols ��� refer
to �m=200. Solid line represents Eq. �54�.
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nificantly the results obtained in Fig. 7. This issue and the
region of validity of the perturbative expansion are discussed
in the next section in the case of a more general perturbative
analysis.

IV. FULL PERTURBATIVE SOLUTION AND PHYSICALLY
REALIZABLE FLOW SYSTEMS

In the previous paragraph, a decoupling between angular
diffusion and the remaining terms in the eigenvalue problem
has been enforced in order to derive an approximate pertur-
bative solution that proves in excellent agreement with spec-
tral data. This section provides a full perturbative scheme to
approach the spectral properties of Eq. �23� and extends the
analysis to physically realizable flow systems.

A. Full perturbative solution

Let us first rewrite Eq. �23� as

H�	��y� = H0�	��y� + i PeeffV�y�	�y� = �w�y�	�y� ,

�55�

where

H0 =
d2

dy2 − c, � = � Peeff, �56�

and c=4�2 /�m
2 . Let ��n�n=1

� and ��n�n=1
� be the eigenvalue

spectrum and the eigenfunction system, respectively, of the
operator H0 weighted with respect to w�y�, i.e.,

H0��n��y� = �nw�y��n�y�, n = 1,2, . . . . �57�

The eigenvalues �n are real and negative and the eigenfunc-
tions are orthogonal with respect to the weight w�y� �12�,

��m,�n�w = �
0

1

w�y��m�y��n�y�dy = 0, m � n . �58�

We assume that �n are normalized, i.e., ��m ,�n�w=�m,n, and
that the eigenvalues are ordered in a decreasing way with
respect to n, i.e., �1��2�¯ �or, equivalently, are ordered
decreasingly with respect to their absolute values�.

Since H �Peeff=0=H0, consider the perturbative continua-
tion of the nth spectral branch by expanding 	=	n and �
=�n as

	n�y� = 

k=0

Np

Peeff
k 	n

�k��y�, �n = 

k=0

Np

Peeff
k �n

�k�, �59�

where

	n
�0��y� = �n�y�, �n

�0� = �n. �60�

Substituting Eq. �59� into Eq. �55�, one obtains

H0�	n
�k���y� + iV�y�	n

�k−1��y� = w�y�

h=0

k

�n
�h�	n

�k−h��y� ,

�61�

which gives for the first leading terms

H0�	n
�0���y� = w�y��n

�0�	n
�0��y� , �62�

H0�	n
�1���y� + iV�y�	n

�0� = w�y����0�n	n
�1� + �n

�1�	n
�0�� ,

�63�

H0�	n
�2���y� + iV�y�	n

�1� = w�y���n
�0�	n

�2� + �n
�1�	n

�1� + �n
�2�	n

�0�� .

�64�

By expanding 	n
�k��y� with respect to the Laplacian basis

��n�,

	n
�k��y� = 


p�n

cn,p
�k� �p�y� , �65�

where we have assumed that 	n
�k� admit zero prejection onto

�n �13�, one obtains for the first-order expansion

�n
�1� = i�V�n,�n� , �66�

where �f ,g�=�0
1f�y�ḡ�y�dy is the usual scalar product for

complex-valued L2 functions �ḡ is the complex conjugate of
g�. Equation �66� derives from Eqs. �60� and �63� by taking
the inner product of the latter with �n, since �H0�	n

�1�� ,�n�
=0 and �	n

�1� ,�n�w=0. In a similar way, substituting Eq. �65�
into Eq. �63� and taking the scalar product with �p, p�n,
since

�H0�	n
�1��,�p� = 


q�n

cn,q
�1��H0��q�,�p� = 


q�n

cn,q
�1��q��q,�p�w

= cn,p
�1��p, �67�

�	n
�0� ,�p�w= ��n ,�p�w=0, and

�n
�0��	n

�1�,�p�w = �n 

q�n

cn,q
�1���q,�p�w = �ncn,p

�1� , �68�

one derives from Eq. �63� the following expression for cn,p
�1� :

cn,p
�1� =

i�V�n,�p�
�n − �p

. �69�

It can be observed that the first-order eigenvalue correction
contributes with a purely imaginary term. In a similar way,
for the higher-order corrections, one obtains

�n
�k� = i�V	n

�k−1�,�n� , �70�

which follows from Eq. �61� by taking the product with �n,
observing that �H0�	n

�k�� ,�n�=0, k�0, 
h=0
k �n

�h��	n
�k−h� ,�n�w

=�n
�k���n ,�n�w=�n

�k�, and

cn,p
�k� =

1

�n − �q
�i


q�n

cn,q
�k−1��V�q,�p� − 


h=1

k−1

�n
�h�cn,q

�k−h�� ,

�71�

which derives from Eq. �61� by taking the inner product with
�p, p�n. Specifically, for the second-order eigenvalue cor-
rection, Eqs. �69� and �70� determine

�n
�2� = − 


q�n

�V�n,�q�2

�n − �q
, �72�

which is real.
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Let us analyze the results of the complete perturbation
scheme. Figure 8 �panel �a�� depicts the results of the pertur-
bation expansion up to the second order �Np=2� for the first
four eigenvalue branches in the case of the Poiseuille flow
�w�y�=6y�1−y� and V�y�=−1+2y�. As can be observed, no
significant improvement is obtained by using the full pertur-
bation expansion compared to the simplified approach devel-
oped in Sec. III C. Considering the dominant eigenvalue
branch, the perturbative solution ceases to be accurate for
Peeff�101, similarly to what is observed in Fig. 7 for the
simplified scheme. By increasing the order of the expansion
�Np=6, panel �b��, a slight improvement can be observed just
close to the crossing of the first two eigenvalue branches
�observe that this crossing involves exclusively their real
parts� close to Peeff=101. A further increase of the order Np
does not improve the results. Indeed, the breakup of the per-
turbative solution should be attributed to the lack of conver-
gence of the power-series expansion Eq. �59� at some critical
Péclet number value, related to the lack of analyticity in the
behavior of the eigenvalue branches with Peeff. This effect
can be clearly appreciated by considering the graphs of the
imaginary part Im��� of the first spectral branches, depicted
in Fig. 9 for the Poiseuille flow �this figure shows the imagi-
nary part corresponding to m= �1, i.e., to the transverse-
flow contribution �iV�y�	�y� in Eq. �23��. At the crossing
point Peeff

c �101 of the real parts of the first two branches,
the imaginary parts experience a sudden increase, which cor-
responds to an unbounded value of d Im��� /d Peeff evaluated
at Peeff=Peeff

c . This phenomenon is an intrinsic property of
the spectrum, which limits the applicability of the power-
series expansion up to value of the effective Péclet number
smaller than Peeff

c .

So far, we have analyzed the case where w�y� is nonuni-
form �possessing a quadratic �Poiseuille� or a linear �Cou-
ette� shape�. As discussed in Sec. III, this corresponds physi-
cally to the stationary homogenization dynamics in an
inflow-outflow three-dimensional mixer unit along the axial
coordinate. The analysis developed applies straightforwardly
also in the case w�y�=1, which physically corresponds to the
dynamic response of a two-dimensional Couette system pos-
sessing a small gap between inner and outer cylinders and
the results obtained are qualitatively similar to those depicted
in Figs. 7 and 8. As an example, Fig. 10 shows the simplified
perturbative prediction of the behavior of the dominant
branch obtained by applying the method developed in Sec.
III C, while lines �a� and �b� represent the results of the full
perturbation scheme with Np=6. Higher-order expansions
provide slightly better results than the simplified model Eq.
�54� solely in a small neighborhood of the crossing point
Peeff

c .

B. Perturbation analysis of physically realizable
mixing systems: The lid-driven cavity

The same perturbative approach developed in the previ-
ous section for advection-diffusion problems expressed by a
non-Hermitian Schrödinger operator in the presence of an
imaginary potential can be extended to generic autonomous
flows. In this case, the spectral problem associated with the
advection-diffusion equation takes the form

− v�x� · �	�x� + Pe−1�2	�x� = �	�x�, x � � , �73�

where � is a bounded domain, the flow is incompresssible,
� ·v=0, and the normal component of the velocity field van-
ishes at the boundary �� of the mixing domain. Equation
�73� is equipped with the homogeneous Neumann condition
at the boundary �	 /�n ���=0.

Letting �=� Pe, Eq. �73� can be rewritten as

− Pe v�x� � 	�x� + �2	�x� = �	�x� . �74�

By applying the expansion Eq. �59� with Pe in place of Peeff,
one obtains for the zeroth-order term
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FIG. 8. Perturbative prediction of the real part of the first four
eigenvalue branches for the Poiseuille flow at �m=200. Panel �a�
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lations; continuous lines represent the perturbative prediction.
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�2	n
�0� = �n

�0�	n
�0�, �75�

indicating that �n
�0� equals the nth eigenvalue �n of the La-

placian operator in � and 	n
�0�=�n is the associated eigen-

function. Henceforth, we assume that ��n ,�m�=�n,m for n
�m. For the first- and second-order terms, the perturbative
equations read

− v · �	n
�0� + �2	n

�1� = �n
�0�	n

�1� + �n
�1�	n

�0�, �76�

− v · �	n
�1� + �2	n

�2� = �n
�0�	n

�2� + �n
�1�	n

�1� + �n
�2�	n

�0�. �77�

By expressing 	n
�0� with respect to the Laplacian basis ��n�

via Eq. �65�, one obtains for �n
�1� the expression

�n
�1� = − ��n,v · ��n� = 0, �78�

which is identically equal to zero since

��n,v · ��n� = �
�

�nv · ��ndx =
1

2
�

�

v · ��n
2dx

=
1

2
�

�

��v�n
2�dx =

1

2
�

��

�n
2v · ndS = 0,

�79�

where n is the normal unit vector, outwardly oriented, at ��.
By applying the same approach described in the previous
section, the expression for the first-order coefficient cn,p

�1� en-
tering Eq. �65� reads as

cn,p
�1� = −

�v · ��n,�p�
�n − �p

. �80�

For the second-order term in the eigenvalue expansion, the
inner product of Eq. �77� with �n provides for �n

�2� the fol-
lowing expression:

�n
�2� = − ��n,v · �	n

�1��

= − 

m�n

cn,m
�1� ��n,v · ��m�

= − 

m�n

��n,v · ��m�2

�n − �m
. �81�

As a case study, consider the flow in a two-dimensional �2D�
lid-driven cavity in the creeping flow regime. Let Lx and Ly
be the lengths of the two edges of the cavity with Lx /Ly
=��1 and let the upper �parallel to the x axis� wall move
with uniform tangential velocity Vw. In this case, the Péclet
number is defined with respect to the wall velocity as Pe
=VwLx /D, so that the nondimensional velocity v entering Eq.
�73� possesses unit tangential velocity at the moving wall.
The velocity field v has been obtained by using a finite-
element code enforcing the stream-function/vorticity formu-
lation.

Let x= �x ,y� be the nondimensional Cartesian coordinate
system obtained by rescaling x and y by the length of the
corresponding edges x�x /Lx and y�y /Ly, so that �
= �0,1�� �0,1� in the nondimensional formulation. The La-
placian operator in the nondimensional coordinate system
�x ,y� reads as

�2 = �x
2 + �2�y

2. �82�

The dominant eigenfunction of the pure diffusive case �Pe
=0� is given by �1�x�=cos��x�, so that its continuation as a
function of the Péclet number represents the dominant spec-
tral branch in the low and intermediate Péclet number re-
gions �beside the zero eigenvalue associated with mass con-
servation�. Figure 11 depicts the comparison between the real
part 
d of the dominant eigenvalue obtained, from direct
solution of the eigenvalue problem Eq. �73� and the results of
the perturbative expansion Eqs. �59�, �78�, and �81�. The re-
sults shown in Fig. 11 are qualitatively similar to those ob-
tained for the rectified Couette flow �see Fig. 7� and indicate
that the perturbative analysis developed in this section can be
successfully applied for generic autonomous flows in the low
and intermediate Péclet number regions.

V. CONCLUDING REMARKS

Perturbation techniques provide a valuable tool for ad-
dressing dispersion and mixing properties of passive scalar
in laminar flows. The use of physical reasoning, aimed at
identifying which contribution controls the homogenization
process in which Péclet number region, permits to simplify
the analysis. Specifically, we have addressed in detail a sim-
plified perturbation method that, based on the negligible role
of angular diffusion in the intermediate Péclet number re-
gion, permits to predict quantitatively, without the use of any
adjustable parameter, the behavior of the dominant eigen-
value as a function of the Péclet number. In point of fact, the
method described in Sec. III C yields an analytical expres-
sion for the Taylor correction �factor G�1��1� Peeff in Eq.
�54�� as a functional of the axial and angular velocities. The
development of a more rigorous, but more elaborate, pertur-
bation scheme �see Sec. IV� does not improve significantly
either qualitatively or quantitatively the results obtained by
means of the simplified scheme.

Throughout this paper, we have considered, as a model
system, a Cartesian version of an open Couette flow, in
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FIG. 11. Perturbative prediction of the real part of the dominant
eigenvalue for the 2D cavity flow with �=10. Symbols ��� refer to
the numerical simulations; continuous line represents the perturba-
tive prediction
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which the action of angular diffusion is expressed by means
of the imaginary potential term iV�y�	�y� in Eq. �23�. In this
formulation, the perturbed operator is H=H0+ i PeeffV�y�,
where H0=�y

2. The same approach, both in the form of the
simplified perturbation scheme described in Sec. III C and in
the complete expansion �Sec. IV�, can be applied to more
complex autonomous flows in arbitrary geometries, for
which the perturbed operator takes the form H=H0+PeeffV,
where H0=�2 and V=−v ·�, where v is an autonomous flow
field. This has been addressed in Sec. IV by considering the
2D lid-driven cavity flow as a model system.

We have also addressed the limitations of the perturbation
methods in the study of the properties of non-Hermitian op-
erators associated with advection-diffusion processes. These
limitations are, in some sense, intrinsic to the spectral struc-
ture of these operators, as discussed in the case study in Sec.

IV, and are associated with the breakup of analyticity of the
eigenvalue expansion at some characteristic point Peeff

c , cor-
responding to the collision of the real parts of two eigenvalue
branches.

The fact that perturbation analysis provides an accurate
description of the spectral properties in the low and interme-
diate Péclet number regions admits practical implications in
the quantification of mixing. In point of fact, the dominant
eigenvalue of the convection-enhanced branch is inversely
proportional to the characteristic mixing time in all the cases
where the initial �for closed systems� or inlet �for open sys-
tems� conditions do not excite eigenmodes of the diffusive
branch �14�. Therefore, the analytical estimate of the domi-
nant eigenvalue by perturbation analysis constitutes a simple
way for predicting the characteristic mixing times in these
cases.
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